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Inclusive DIS one of the best tools to study

the structure of nucleon 
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DIS regime ==> Q2 >> M2,  ν >> M

Q2 = -q2 = 4EE`sin2 (θ/2)

x = Q2/(2Mν) ν = E – E`

unpolarized SF polarized SF



DIS Cross Section Asymmetries
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Measured quantities

where A1, A2 are the virtual
photon-nucleon asymmetries.
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At present, A|| is much better measured than A⊥
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NB.  γ cannot be neglected in the SLAC,
HERMES and JLab kinematic regions



As in the unpolarized case the main goal is:

to test QCD

to extract from the DIS data the polarized PD
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where "+" and "-" denote the helicity of the parton, along or 
opposite to the helicity of the parent nucleon, respectively.



The knowledge of the polarized PD will help us:

to make predictions for other processes  like polarized
hadron-hadron reactions, etc.

more generally, to answer the question how the helicity
of the nucleon is divided up among its constituents:

Sz =  1/2 = 1/2 ∆Σ(Q2) + ∆G (Q2) + Lz (Q2)
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An important difference between the kinematic regions
of the unpolarized and  polarized data sets

22   Wand  lowat  are datapresent   theoflot A Q

2222 4   , 51 GeVWGeVQ >−≈

While in the determination of the PD in the unpolarized case we
can cut the low Q2 and W2 data in order to eliminate the less 
known non-perturbative HT effects, it is impossible to perform 
such a procedure for the present data on the spin-dependent 
structure functions without loosing too much information.

HT corrections should be important !
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are exactly calculable
J. Blumlein, A.Tkabladze

dynamical HT power corrections
=> non-perturbative effects (model dependent)In NLO pQCD
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polarized PD evolve in Q2

according to NLO DGLAP eqs.



Factorization scheme dependence

Beyond the LO approximation the PD are scheme depended !
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On theoretical grounds we prefer to use the JET scheme
(all hard effects are absorbed in the Wilson coefficient functions).

Carlitz, Collins, Mueller (1988)
Efremov, Teryaev (1989); Muller, Teryaev (1997)
Anselmino, Efremov, Leader (1995)

In the JET scheme (as well as in AB scheme)

22 Q  oft  inpedenden  are  ),ss(  as  wellas  ,)( ∆+∆∆Σ Q

it is meaningful to directly interpret ∆Σ as the contribution of the
quark spins to the nucleon spin and to compare its value obtained
from  DIS region with the predictions of the different (constituent, 
chiral, etc.) quark models at low .2Q



Connection between
Theory and Experiment

E.Leader, A.Sidorov, D.Stamenov
[hep-ph/0212085] Eur. Phys. J. C23, 479 (2002)
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SMC; Blumlein, Bottcher
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METHOD of ANALYSIS
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model independent way
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SR for n=1 moments of PD
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The sum rule (1) reflects the isospin SU(2) symmetry, 
whereas the relation (2) is a consequence of the SU(3) 
flavour symmetry treatment of the hyperon β-decays.

While isospin symmetry is not in doubt, there is some question
about the accuracy of assuming SU(3)f symmetry in analyzing
hyperon β-decays. The results of the recent KTeV experiment
at Fermilab on the β-decay of Ξ0, , 
however, are all consistent with  exact SU(3)f symmetry. 
Taking into account the experimental uncertainties 
one finds that SU(3)f breaking is at most of order 20%.

νe+Σ→Ξ  0



νe+Σ→Ξ  0KTeV experiment 
Fermilab

β-decay
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A good agreement with the exact SU(3)f symmetry ! 

SU(3) breaking is 
at most of order 20%

From  exp. uncertainties 



RESULTS OF ANALYSIS
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G   and  )( data  DIS   From inclusive ∆∆+∆⇒ qqNLO polarized PD
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n=1 moments of PD, JET scheme,  Q2=1 GeV2

the correlations between the parameters are taken into account
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significant improvement 
of the precision of the data

-LSS 2001 (Q2 = 5 GeV2)
[21] Leader,Sidorov,Stamenov, Euro Phys. J. C23, 479 (2002)

PD polarized NLO(JET) LSS'2001  theusing /Fg
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hep-ex/0302020



(∆q/q)Jlab have been extracted from the data:

assuming the strange quark densities s(x), s(x), ∆s(x) and ∆s(x)

to be negligible in the region x > 0.3

in the naive quark-parton model
_ _



BBS model for the input PD
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NB. (∆d + ∆d)BBS  > 0

for x > 0.35 !

BBS 
- - -

_

In our analysis the BBS model was accepted as a parametrization 
for the input PD

LSS, Int. J. Mod. Phys. A13 (1998) 5573
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BBS model for the input PD
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Fit to the world (1997) data on A1 and g1/F1

“… the difference between leads 
to a considerably different behaviour of A1

d(x,Q2) 
in the kinematic region: x>0.35, Q2 ~ 5-10 GeV2, 
and allows a better fit to the SLAC E143 data on
A1

d(x,Q2) in this region in the case of the para-
metrization for the input 
polarized parton densities. The difference 

for at large x is a consequence of the 
fact that the BBS distributions are forced to satisfy 
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LSS, Int. J. Mod. Phys. 
A13 (1998) 5573

N.B. A lot of more accurate data have been 
reported after that period: final SMC, final
SLAC/E143, SLAC/E154, SLAC/E155, 
HERMES/p and JLab data





Very recent (unpublished) results from the fit to the
world data including the JLAB and HERMES/d data

i a very good description of the HERMES/d data
χ2=11.0 for 18 points

i PD( g1
NLO+ HT) practically do NOT change !!

Ch. Weiskopf  
02-043 Thesis (2002)



HT corrections to g1 are better determined now, 
especially for the neutron target

HT/n changes essentially 
at                      region2.0≈x



CONCLUSIONS

The fit to the present data on g1 is  essentially improved, 
especially in the LO case, when the higher twist terms
are included in the analysis.

The size of  HT corrections have been extracted from the
data in  model independent way

)( 1 HTgPD LT + )/( 11
LTLT FgPDwell consistent with

To extract correctly the polarized PD from the g1 data, 

the  HT corrections to g1 have to be taken into account in 
the analysis.



MORE GENERALLY

Given the limited range and precision of present g1(x,Q2)
measurements, one would like

a direct measurement of ∆G (COMPASS, RHIC)

Inclusive DIS measurements are sensitive only to

thus a new probe is needed to separate quark 

and anti-quark polarized PD from SIDIS, W production 

(HERMES, COMPASS, RHIC)

)qq( ∆+∆

Data at larger Q2 and  smaller x would be very important 

for our understanding of the spin properties of the nucleon.
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